1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
---
references:
- id: aristoteApplicationsCategoricalFramework2022
abstract: >-
M2 internship report. We extend Petrişan and Colcombet's categorical
framework for automata minimization and learning with new categorical
algorithms and apply it to various families of automata for which
minimization and learning had not been studied previously. We focus on
transducers whose output lie in arbitrary monoids, weighted automata on
Dedekind domains and automata whose states are quasi-ordered. This last
example links automata learning together with the Valk-Jantzen lemma, widely
used in the theory of well-structured transition systems.
author:
- family: Aristote
given: Quentin
citation-key: aristoteApplicationsCategoricalFramework2022
issued:
- year: 2022
month: 8
day: 20
language: en
license: All rights reserved
publisher: École Normale Supérieure, PSL University
title: >-
Applications of a categorical framework for minimization and active learning
of transition systems
type: report
URL: >-
https://git.eleves.ens.fr/qaristote/m2-internship-report/uploads/2594114883f26d77c2b4f3731656351a/report.pdf
- id: aristoteFibrationalFrameworkNested2020
abstract: >-
M1 internship report. We extend a previous fibration- and coalgebra-based
categorical framework for characterizing greatest fixed-points, e.g.
bisimilarity-like notions, as winning positions in safety games. Our new
framework thus characterizes nested alternating greatest and smallest
fixed-points of a fibration- and coalgebra-based categorical operator as
winning positions in parity games. This provides a new kind of parity games
for the model checking of coalgebraic modal logic, but unfortunately we did
not manage to instantiate more general notions of bisimulations such as fair
and delayed bisimulations.
author:
- family: Aristote
given: Quentin
citation-key: aristoteFibrationalFrameworkNested2020
issued:
- year: 2020
month: 8
day: 28
language: en
license: All rights reserved
title: >-
Fibrational Framework for Nested Alternating Fixed Points and (Bi)Simulation
Notions for Büchi Automata
type: report
URL: >-
https://git.eleves.ens.fr/qaristote/m1-internship-report/uploads/3431548a277eb5fc297d8e7d93d1e3ce/aristote_quentin_m1_internship_report.pdf
- id: aristoteMarcheQuantiqueReseau2019
abstract: >-
Rapport de stage de L3. On introduit un automate cellulaire quantique à une
particule, un marcheur quantique, sur une variété triangulée de dimension 2.
La triangulation change à travers des Pachner moves, induits eux-même par la
densité du marcheur, permettant à la surface de se transformer en n'importe
quelle autre surface qui lui est topologiquement équivalente. Ce modèle
généralise le marcheur quantique sur un réseau triangulaire, introduit dans
un article précédent par un des auteurs, et dont la limite en espace-temps
retombe sur l'équation de Dirac en 2+1 dimensions.
Des simulations numériques montrent que le nombre de triangles et que la
courbure évoluent en exp(a log(t) - bt²), où a et b paramétrisent la façon
dont la géométrie change selon la densité locale du marcheur, et que, sur le
long terme, la surface redevient plate. Enfin, on montre aussi numériquement
que le comportement global du marcheur reste le même sous l'influence de
fluctuations spatio-temporelles aléatoires.
author:
- family: Aristote
given: Quentin
citation-key: aristoteMarcheQuantiqueReseau2019
issued:
- year: 2019
month: 8
day: 25
language: en
license: All rights reserved
title: Marche quantique sur un réseau triangulaire sujet à des Pachner moves
type: report
URL: >-
https://git.eleves.ens.fr/qaristote/rapport-stage-l3/-/raw/b9f9cc78ad3eabe6508be70cc27dc9bf89d34755/rapport.pdf
...
|